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The λ-calculus, typed or not, has a little-known arithmetical aspect. We arrive
at it by considering application, exponentiation and even iteration to be the same
operation in different guises.

The first indication that this might make sense is the coincidence between su-
perscript notation fn for iteration, which applies the exponent or iterator n to
unary operation f , and mn for exponentiation. As Wittgenstein said, a number
is an exponent of an operation.
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This brings in its train a set of ‘AMEN’ combinators for addition, multiplication,
exponentiation and naught (zero) of Church-numerals. They have some some
useful algebraic properties (in the presence of the ζ-rule). Moreover, they are
combinatorially complete, in that they support a ‘λogarhythmetic’ form of bracket
abstraction, consistent with but extending some of Napier’s laws of logarithms
from numbers to wilder forms of entity.

The interest of logarithms (to a ‘variable’ base!) seems to be originally pointed
out and explored by Böhm in the late 1970’s, in some undeservedly little-known
papers from that time. His arithmetic and algebra of combinators has great en-
tertainment value. But there is some rhyme and rhythm value in Böhm’s arhyth-
metical ruminations, that I reckon bears some repetition.

1 Introduction

What are numbers? Leaving aside the numbers we use when measuring things, specifically,
what are the numbers we use when we are counting off operations, as when giving someone
change for something bought in a shop, or playing the drums? The answer is that numbers
are fundamentally iterators, or templates for keeping track of iterations.

Something similar can be said about elements of any initial algebra – elements are firstly
iterators, and secondarily they participate in recursions. The natural numbers are just a
particularly simple case.

The idea of iteration carries within it the idea of exponentiation, or raising one number to
the power of another. An iterator a takes an endofunction f : X → X on a set X, and gives
back its a-th iterate fa : X → X. So an iterator is itself an endofunction (on X → X) that
can be iterated, say b times. This takes f : X → X to f ∧ (expa b), and indeed (+1) : X → X
and c : X to c+ab. Exponentiation be is itself a form of iteration: it is iterated multiplication
by b (ie. (×b)), starting at 1.

Exponential notation for numbers is at least as old as Archimedes, who considered the
problem of counting or estimating immensely many grains of sand. He devised an exponential
notation in which he expressed an upper bound for the number of grains it would take to fill
the universe.

Numbers are among the first abstract things to which we give names, and notation. A
handly notation for iteration is superscription, writing the number of iterations as a super-
script of the expression for the iterated operation f

fn

It is not an accident that we often use the same superscription notation for numerical expo-
nentiation, with the base replacing the operator, and the exponent replacing the iteration

be = (×b)e(1)
b× e = (+b)e(0)
b+ e = (+1)e(b)

In these equations, the first superscription denotes numerical exponentiation, and the others
denote iteration.
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Superscripts can soon get out of hand at about 2 levels of nesting, so in practice one needs a
infix binary operator such as b∧e. Still, superscription is sometimes helpful in helping to read
expressions without undue parenthetical clutter, and take in their grammatical structure. So
I’ll often use superscription (particularly when the exponent expression is simple) as well as
the infix operator,

This paper explores the use of exponential notation for function application, which takes
the function as the right operand. Hand in hand with exponential notation comes a use-
ful algebraic calculus (‘exponential calculus’, or Cantor’s laws of exponents) involving the
operators ×, 1, + and 0 for working with exponential notation:

ca×b = (ca)b a1 = a
ca+b = ca × cb a0 = 1

A certain part of this calculus, may be re-expressed in terms of logarithms to an ‘indetermi-
nate’ base x::

(logx b)× c = logx(bc) 1 = logx x
logx b+ logx c = logx(b× c) 0 = logx 1

If one thinks of application as raising the argument to the power of the function, then surely
some form of λ-abstraction, or ‘bracket abstraction’ should correspond to the logarithm.
Böhm seems to have had this insight over 3 decades ago, to be re-presented in section 6 on
page 12.

2 The AMEN combinators: +, ×, ∧, 0.

We can read Cantor’s laws as defining combinators (×),1,(+),0, using superscript (af ) or
exponential (a∧f) notation for application, instead of applicative f(a) notation, as in various
Haskell notations like f a or f $ a.

In this notation the binary operators are related to the combinators by the arithmetically
mind-boggling laws:

b ∧ c = c ∧ b ∧ (∧)
b × c = c ∧ b ∧ (×)
b + c = c ∧ b ∧ (+)

It is one of the very nice features of Haskell that we can take over and redefine symbols
such as for the arithmetical operations (+), (×), and (∧). Three (out of four) cheers for the
‘hiding’ keyword! However, it doesn’t seem that we can take over ‘0’. 1 This is a slight pity,
as it is the only other symbol I need. I have type-set it here as a dot that is almost invisible:
with brackets around it looks like a squashed ‘0’.

module Amen where

import Prelude hiding ((×), (∧), (+), (
·
), (〈×〉), (〈∧〉), (〈+〉), (〈·〉))

infixr 8 ∧
infixr 7×
infixr 6 +

infixr 9
·

-- yes, there is a symbol there.

1(PS: It seems that sufficiently advanced ghc-specific voodoo exists that one can actually extricate ‘0’ from
ghc’s gullet, and treat it as an bona-fide identifier. I have not found an opportunity to try.
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Here are some simple definitions of binary operations corresponding to the arithmetical
combinators:

a ∧ b = b a
a × b = λc → (c ∧ a) ∧ b
a + b = λc → (c ∧ a)× (c ∧ b)

(
·
) a b = b -- Written infix, a ‘naught ‘ b = b the operator would be invisible.

Instead of naught 2, I have used the almost unnoticable symbol ‘
·
’ as an an infix operator, on

the grounds that in prefix form ‘(
·
)’ it looks a little like ‘0’. It throws away its left argument,

and returns its right.

naught = (
·
)

The type-schemes3 inferred for the definitions are as follows:

(∧) :: a → (a → b)→ b
(×) :: (a → b)→ (b → c)→ a → c
(+) :: (a → b → c)→ (a → c → d)→ a → b → d

(
·
) :: a → b → b

Equations can be proved by substituting equals for equals. One can also allow instances of
the following “ζ” Rule in proving equations.

x ∧ a = x ∧ b ⇒ a = b

with the side condition that x is fresh to both a and b. This is is really a cancellation law.
All equations asserted below should be interpreted as ζ-equations.

By using “AMEN” notation for the combinators addition, multiplication, exponentiation
and naught (aliases: nil, null, nihil, none, non-entity, nothing, nought, ought’nt . . . ), we utter,
in reverse, from nothingness to abundance, the last word in combinators 4.

N b = b
E a b = b a
M a b c = E (E c a) b
A a b c = M (E c a) (E c b)

2I use old-fashioned spelling “naught”: the word is in fact etymologically connected with “naughty”. A lot of
fairly salacious word-play in Shakespeare’s plays skates around this. It amuses me that the concept of zero
was thought to be “dangerous Saracen magic” in medieval times (William of Malmesbury). According to
John Donne, “The less anything is, the less we know it: how invisible, unintelligible a thing is nothing”. It
Noths, according to Heidegger. I think of its symbol as the first letter of ‘Origin’.

3Almost certainly some citable publication contains a Hilbert-style axiomatisation of propositional logic of
the conditional (→) equivalent to these type-schemes, at least modulo permutating the antecedents of a
conditional.

Of course it is not uncommon to use exponential and other arithmetic notation at the level of types,
which amounts to an arithmetic of cardinals. But such a precious notational device as exponentiation
should not be too heavily overloaded.

4Thanks to Jim Laird for the joke. It is also the first word in the reversal of any prayer.
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3 The BWICK combinators: const ,id ,(·),flip, diagonalisation

A set of combinators and equational laws is combinatorially complete if they suffice to simulate
or compile λ−abstraction with β-contraction into combinatorial code. For precise definition
and full discussion, see [Bar84] or [HS86].

It happens that (+), (×), (∧) and (
·
) are combinatorially complete. The gist of it is that you

can translate, or compile an expression e written using a fresh variable x into an applicative
expression [x]e in which that x does not occur, but only the combinators (+), (×), (∧) and (

·
),

such that for arbitrary a, ([x]e) a = e[x← a]. All occurrences of x have been concentrated in
a single argument place.

We will see it more directly in section 6, by a argument due to Böhm, but a simple way to
establish completeness it is enough to define the following ‘BWICK’ combinators in terms of
them. This particular set is well-known and probably originally designed to be combinatorially
complete. All but one (W ) are well known to Haskell programmers, under the names in the
left hand column of the following table. The second column gives a possible definition as a
λ-term. The third column has the upper case capital letters given as names by Curry or some
other authority. The last column contains an aide memoire.

flip (λf a b → f b a) C -- swap the arguments of a binary function
(.) (λf a b → f (a b)) B -- compose two functions
id (λf → f ) I -- identity
const (λf → f ) K -- return a function with a single value

(λf a → f a a) W -- this might be called diag, or dupl

For pronouncability, with a lisp5 these are the BWICK combinators.
For comparision, here is a similar table for the arithmetical (AMEN) combinators

(λm n s z → n s (m s z )) A -- M (m s) (n s)
flip (.) (λm n s → n (m s)) M -- ‘natural’ composition
flip ($) (λm n → n m) E -- ‘natural’ application
flip const (λ n → n) N -- dispose of an argument

Unfortunately, there seems to no pithy Haskell slang for addition with arbitrary summands.
Some sums have a short form though, such as E + E = flip diag .

The BWICK combinators were introduced in Curry’s thesis [Cur30]. With tweaks for
efficiency, David Turner used them to implement his seminal function language SASL as
described in [Tur79]. These combinators can be viewed as an adaption of the standard ‘SKI’
combinators, that provides for important special linear cases of S by using B and C . A
definition of S in terms of the arithmetic combinators is not difficult 6, but there are better
and worse ways to explain the idea. It might be more enlightening to first define S as a binary
operator. See section 6 on page 12.

The definitions of the Curry combinators in terms of the arithmetic combinators are quite
simple, though it may not be immediately clear where they come from.

5eg Brian Walden’s.
6One blindingly unenlightening definition of S (which may not even be correct):

(×)× (×)(×) × (×)× ((∧)× ((∧) + (∧))(×))(∧)
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combC = (×)× (∧) ∧ (×) -- called flip by fp’ers
combB = (∧)× (×) ∧ (×) -- (×) ∧ combC i.e. composition (.)

combI = evil ∧ (
·
) -- or (

·
) ∧ (

·
), (∧)× (∧) ∧ (×), inter alia

combK = (∧)× (
·
) ∧ (×) -- (

·
) ∧ combC

combW = (∧)× ((∧) + (∧)) ∧ (×) -- ((∧) + (∧)) ∧ combC
evil = error "Unthinkable" -- not to be inspected

We finish this section by deriving these definitions from the definition of each Curry combi-
nator.

The key thing is to start with the C combinator. The main tool is the ζ-law.

C takes a binary function, and transposes or ‘flips’ its arguments.

C a b c = a c b { by def of C }
= b ∧ c ∧ a { re-express using exponentiation }
= (c ∧ a) ∧ b ∧ (∧) { by def of (∧) }
= c ∧ (a × (b ∧ (∧))) { by def of (×) }

So,

C a b = a × (b ∧ (∧)) { by ζ }
= (b ∧ (∧)) ∧ a ∧ (×) { by def of (×) }
= b ∧ ((∧)× a ∧ (×)) { def of (×) }

So,

C a = (∧)× a ∧ (×) { by ζ }
= (a ∧ (×)) ∧ (∧) ∧ (×) { by def of (×) }
= a ∧ ((×)× (∧) ∧ (×)) { by def of (×) }

So, C = (×)×(∧)∧(×), or to use exponential notation: (×)×(∧)(×), or to use ordinary
applicative notation with the AMEN combinators: M M (M E ).

The gruesome bit is now over. Most other combinators are plain sailing.

B is the transpose of (×), ie (×)C . From the middle step in the derivation of C ’s arithmetic
form, we therefore have as a by-product

B = (∧)× (×) ∧ (×) { alt. (∧)× (×)(×) or M E (M M ) }

K is the transpose of (
·
), ie (

·
)C . Therefore, just as for B ,

K = (∧)× (
·
) ∧ (×) { alt. (∧)× (

·
)(×) or M E (M N ) }

I is the transpose of (∧), ie (∧)C . So we could take the following.

I = (∧)× (∧) ∧ (×) { alt (∧)× (∧)(×) or M E (M E ) }

But we can also take any of the following:
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I = C × C

I = evil ∧ (
·
)

To explain evil, it is anything. Its value does not matter, and never needs to be
inspected. But it exists.

W Let’s first express its transpose WC , which is quite easy.

WC a b = b a a { by def of W }
= a ∧ a ∧ b { re-express }
= (b ∧ a ∧ (∧)) ∧ a ∧ (∧) { by def of (∧), twice }
= b ∧ a ∧ ((∧) + (∧)) { def of (+) }

So by the ζ-rule (twice) WC = (∧) + (∧), that is W = ((∧) + (∧))C . Note how this fits
with the definitions of K and I.

K = (
·
)C

I = (∧)C

W = ((∧) + (∧))C ; ...

This completes the derivation of the BWICK combinators.

4 Further examples: pairing, S , and fixedpoints.

4.1 The pairing combinator ( ,) and currying.

Consider the binary pairing operator: (a, b). The usual Church encoding of pairs gives

(a, b) c = c a b -- = ((b∧) · (a∧))c
(a, b) = (a∧)× (b∧)

In superscript notation:
(a, b) = a(∧) × b(∧) .

The first and second projections are given by K(∧) and 0(∧) respectively.

K ∧ (a, b) = K a b = a
0 ∧ (a, b) = 0 a b = b

By shuffling parameters around, one can obtain a purely arithmetical (and linear) expression
for the pairing combinator ( ,), such as (∧)× (×)× (∧)(×).

Hand in hand with pairing (and indeed exponentiation) comes currying:

curry f x y = f (x , y)

We can immediately see that curry(a(∧)) = a, so that id = (∧)× curry . But curry has even
better properties, that will demonstrated later in section 6 on page 12 on page 14.

Two possible expressions for the combinator curry are B × ( ,)(×) (which is linear) and
K× ( ,)(+) (which is non-linear, since it involves both addition and zero). These can be made
purely arithmetic by translating B, K and ( ,) into arithmetic.
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4.2 The combinator S , with S a b c = a c (b c).

Consider S first as a binary combinator, written infix with B as in (a B b)x = a x (b x). The
reversed symbol is useful: (a C b) = (b B a). As a matter of fact a C b can be expressed as a
product of constant powers: a( ,) × b(∧).

In notation without superscripts, one of many possible definitions of S is this horrible thing:

(×)× ((×) ∧ (×))× (×)× ((∧)× ((∧) + (∧)) ∧ (×)) ∧ (∧)

Using superscript notation, it is possibly even more alarming.

(×)1+(×)+1 × ((∧)× ((∧) + (∧))(×))
(∧)

A straightforward way to define S , is first to define a linear version, S ′ a b c c′ = a c (b c′).
For example, S′ a b = a×b(×), so S′ = (×)1+(×)). Finally, define S from S ′ by diagonalisation:
S a b = (S′ a b)W or S = S′ ×WB. The matter of fact mentioned above arises from more
arithmetical considerations, and will be explained in section 6 on page 12 on λogarhythms.

4.3 Curry and Turing fixed-point combinators.

Two fixed-point combinators distinguished at least by their historical significance are Curry’s
([CF58, p. 178]) and Turing’s [Tur37]. Both their fixed point combinators make use of self
application7. This of course banishes us from the realm of combinators that Haskell can type,
but what the heck. We call the self application combinator sap.

sap x = x x = W (∧) x = W 1 x
So sap = (∧) ∧W = 1 ∧W

We call Curry’s combinator simply Y .

f ∧Y = sap (sap × f ) -- ie Y f = sap (f . sap)
Y = (sap×)× sap

= sap ∧ ((×) + 1)

Y can thus be seen as applying the successor of multiplication to the value sap.
Turing’s combinator, which we call YT , is T ∧ T ie T ∧ sap where Txy = y(xxy).

T x y = y (x x y) = y (sap x y) = y ((sap ∧ C ) y x )
(T ∧ C ) y x = y ((sap ∧ C ) y x )
(T ∧ C ) y = ((sap ∧ C ) y)× y
(T ∧ C ) = (sap ∧ C ) + 1
T = ((sap ∧ C ) + 1) ∧ C

= sap ∧ (C × (+1)× C )

T can thus be seen as applying a kind of conjugate (with respect to the involution C ) of the
successor operator to the value sap.

7Is this inevitable?
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5 Algebra and arhythmetic

In the presence of the ζ-rule,

1. (+, (
·
)) forms a monoid.

2. (×, 1) forms a monoid, where 1 = combI .

3. left-multiplication (a×) distributes over the additive monoid: a× (b +c) = a×b +a×c
and a × (

·
) = (

·
) .

4. exponentiation (a∧) maps the additive monoid to the multiplicative monoid: a ∧ (b +
c) = (a ∧ b) × (a ∧ c) and a ∧ (

·
) = 1 . This was Napier’s idea: to avoid the ‘slippery’

errors that can arise in the multiplicative world by expeditiously working instead on
more solid ground, in the additive monoid. 8

5. exponentiation (a∧) maps the multiplicative monoid to the composition monoid (·, id)
of unary functions over our arithmetical domain: a ∧ (b×c) = (a ∧b)∧c and a ∧1 = a,
ie ∧(b × c) = (∧c) · (∧b) and (∧1) = id .

It is not asked that addition and multiplication are commutative. There need be no sub-
traction (or division). Right multiplication (×a) need not distribute over sums. I have heard
such structures called by names such as ‘weak near semiring’. Certainly, as far as addition
and multiplication are concerned, they are a bit uncivilised. However, rings do not generally
have exponentiation, which makes up for the feeble structure on + and ×.

Personally, I call the algebraic structure (even without the “funny” numbers (∧), (×), (+),
but only 0 and 1 = 00 = id as constants ) a ‘rhythmetic’.

The laws of (+), (
·
), (×), 1, (∧) above are within a few gnat’s whiskers of the basic laws of the

arithmetic of transfinite ordinals with simple (non-Hessenberg) addition and multiplication.
However the coincidence is not exact. Only when a is “numerical”, which is to say a “true”
number, do the following laws obtain.

1 ∧ a = 1

(
·
)× a = (

·
)

Matters are different when a is an arbitrary combinatory expression, such as K.
9

Delightfully, and crucially, the laws of Naperian logarithms extend to λogarhythms more
smoothly than one has any right to expect 10. Moreover, some entertaining phenomena crop

8Napier famously wrote in the preface to his “Mirifici logarithmorum canonis descriptio” [Nap14] (1614):

Since nothing is more tedious, fellow mathematicians, in the practice of the mathematical arts,
than the great delays suffered in the tedium of lengthy multiplications and divisions, the finding
of ratios, and in the extraction of square and cube roots– and in which not only is there the time
delay to be considered, but also the annoyance of the many slippery errors that can arise: I had
therefore been turning over in my mind, by what sure and expeditious art, I might be able to
improve upon these said difficulties.

He wanted to move between the ‘slippery’ multiplicative world of geometric progressions and the ‘expedi-
tious’ additive world of arithmetic progressions; to multiply, divide and take roots by adding, subtracting
and dividing.

9I should say something about left-cancellation laws in ordinal arithmetic.
10For example logx(αb) = (logx α)× b, merely in case b does not contain x. It need not be numerical.
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up. For example, C2 = C × C = 1 (ie C is a non-trivial square-root of identity), and as

for R = CC , we actually have R(RR) = C (ie C and R are reconstructible from each other).
Curiousities like this abound everywhere one looks.

Exponentiality The rule of exponentiality ζ says that if things t are the same as exponentials
xt where the base x is a fresh variable, then they’re just the same. It allows a kind of
cancellation in equational reasoning. Everything can be considered to be a function of a
generic argument. The ζ rule is entirely indispensible.

A remarkable discovery of Curry’s was that finitely many instances of ζ suffice to axioma-
tise all consequences of ζ. A combinatory algebra that satisfies Curry’s equations is (I think,
perhaps wrongly) known as an extensional combinatory algebra. Quibbles can arise about
whether the term ‘extensional’ is appropriate, as what is meant is schematic equality as legit-
imated by the ζ-rule, but whether or not the terminology is appropriate, it is in widespread
use. One can read about these algebraic axioms in Hindley and Seldin’s book [HS86, Ch.
8], and about more full-blooded, genuine or semantical, forms of extensionality in Selinger’s
paper, [Sel02].

Curry’s equations were written (TODO: check) using the S and K combinators, but they
can be written using any combinatorially complete set. A key rôle is played by the K and S
combinators, the former being used to throw away an unwanted argument, and the latter to
feed arguments to both parts of an expression of exponential form. (Expressions of the form
tK are in facts closed under addition, and indeed multiplication by arbitrary factors, as we
shall see shortly.)

In an arithmetical setting, these equations between closed terms can be obtained by ‘point-
lessly’ removing variables from the following laws. (I allow myself to go a bit rough-shod across
some subtlety here, to do with supplying combinators to ‘insufficiently many’ arguments.)

(∧)K B x B y = y B x
(×)K B x B y B w = y B (x B w)
(+)K B x B y B w B z = y B w B (x B w B z)

(
·
)K B x B y = y

(x ∧ y)K = xK C yK homomorphism
(x ∧ y)K = xK × y
(x× y)K = xK + yK

1K = 0

(x+ y)K = (xK×(∧) + yK×(∧))curry

0K = 0curry

xK B 1 = x universality

Here B is used as an infix form of the S combinator ; C is its converse, and K is a superscript
form of the K combinator. These have quite pithy arithmetical expressions, given in section
6.

Note that a lot of exponential and multiplicative structure is mapped around by K . What
is important is that the defining equations for the combinators are preserved.

As for the ‘universality’ equation, it is still a bit mysterious to me, but it is connected with
the universal property of adjoining indeterminates to a ring-like structure. We have indeed a
ring-like structure R, and we can consider the ring R[X] of ‘polynomials’ in an indeterminate
X. (By a polynomial I mean an element of the free ring with a fresh generator.) Let K be
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the injection of R into R[X]. Given any morphism s : R→ S and any a : S, there is a unique
morphism s′ : R[X]→ S such that

s′ · K = s ie, s′ extends s
s′X = a ie, the fresh atom X is sent to a

Note: 1 is not in the image of K . 11

TODO: Freyd [Fre89]; Selinger [Sel02]; Statman [Sta14].

Ideals, more or less. A paper by Böhm ([Böh82]) is particularly concerned with the ring-like
structure described above. In it, Böhm introduces a notion that is clearly inspired by the
notion of an ideal in a ring, A class is called by Böhm a “notion of zero” if it contains (

·
),

is closed under addition, and for arbitrary a is closed under both (a×) and (×a). In other
words, it is an additive submonoid, closed under multiplication by arbitrary quantities, either
way round.

One example: the class of constant functions that can be put in the form aK , or equivalently
(
·
)× (a∧). Constants, as powers of an arbitrary base have the same value. All ‘constants’ are
ζ-equivalent to terms of the form aK . 12 The following are straightforward to prove with the
ζ-rule.

• Closure under addition:
(
·
) = 1K

aK + bK = (a× b)K

• Closure under scaling by arbitrary factors on left and right:

b× aK = aK

aK × b = (a ∧ b)K

Because of the last scaling law, the class aK = (
·
) × (a∧) already includes the class

(
·
)× (a1∧)× · · · × (ak∧).

What does one do with an ideal? Quotienting. So one might consider a and b to be ‘equal’
if a and b differ only by an element of the ideal (ie by ‘zero’), that is by addition of a ‘constant’
(additive) displacement, ie a = b+ cK . Equivalently, a = b× cB, which seems to mean that
a and b differ only by postcomposition of some scalar (or ‘scaling’, multiplicative) factor c.

Perhaps in pursuit of duality, Böhm introduces also the term “notion of infinity” for a set
of terms closed under (a+) and (+a) for any a. One example is the set I of terms of the form
a×K.

11Curry’s equations remind me slightly of the axioms for Haskell’s applicative functors, if only notationally.
With applicative functors (discovered by Conor McBride, among others), it seems that one cares about the
linear combinators only, namely B, I and ($). (One could use (∧),1, (×).) There is no place, one would
guess, for S, K or W among the laws for applicative functors.

Where Curry has the axiom (xK) B 1 = x, Conor has an interchange axiom (translating it into our more
comely notation) (y∧)K B x = xB yK . This happens to be true; but more is true. In fact, (∧)K B xB y = yB x
is one of Curry’s axioms for the linear combinators. For an applicative functor one needs this only when x
has the form K .

12They play a major rôle in Curry’s investigation of the ζ-law at section 5.
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• Closure under arbitrary addition on left and right:

b+ (a×K) = a×K
(a×K) + b = (a C b)×K

(Here C is infix notation for the converse of the binary ’S’ combinator. This was intro-
duced in connection with the Curry equations.)

Sheer duality might lead one to conjecture that this particular ‘notion of infinity’ a×K might
be closed under multiplication. It isn’t.

To me, the following categorisations belong together. Here a is a term and x is a fresh
variable

• A term a is nil, or zero if 1 = x ∧ a. (ie. a = ().)

• A term a is finite, or numerical if a = a(+1,0). (This needs more thought.)

• A term a is constant if a = x× a. (eg. bK .)

• A term a is infinite if a = x+ a. (eg. b×K.)

No doubt other forms of expression (eg a + K, aB, (a∧) = a(∧), . . . ) have interesting
closure properties with respect to addition, scalar multiplication, and so on.

Böhm’s paper teems with monoidal and cartesian structures: the monoid of lists under
concatenation, the monoid (×, 1) of endofunctions on a set under composition, the monoid
(+, 0) of endofunctions of endofunctions under pointwise-lifted composition, the cartesian
structure of products, currying, pairs and their projections. In the next section, we avail
ourselves of this apparatus to extend Napier’s laws of logarithms.

6 Böhm’s λogarhythm

One can daydream of using logarithmic notation for lambda-abstraction, with a ∧ (log x e) =
e [x ← a ]. Here the ‘base’ is a bound variable, but no matter: one obtains Napier’s laws of
logarithms.13 For example, whether or not the base occurs in both factors of a product, the
product is turned into a sum. If a, b and c are expressions such that c contains no occurrences
of x, then we have the following equations, once familiar to schoolchildren.

log x (a × b) = (log x a) + (log x b)

log x 1 = (
·
)

log x (a ∧ c) = (log x a)× c
log x x = 1

The last equation is not difficult to remember, and the others can be summed up in the
following formula for the logarithm of a product of constant powers.

log x (b1 ∧ c1 × ...× bn ∧ cn)
= (log x b1)× c1 + ...+ (log x bn)× cn

13It has to be said: but not the laws that deal with change of base.
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It should be stressed that this equation holds regardless of whether the coefficients c are
numerical.

Now let us consider ‘linear’ logarithms, where we care about how many times the ‘base’ x
occurs in e. These obey many delightful arithmetico-combinatorial laws, that can be figured
out on the edge of a newspaper. Suppose a, b, b1, . . . bk are expressions that do not contain
any occurrences of the variable x.

log x x = 1
log x (a x b) = log x (b ∧ x ∧ a)

= log x ((x ∧ a) ∧ (b∧))
= a × (b∧) -- = a ∼ b

log x (a x b1 . . bk) = a × (b1∧)× . .× (bk∧)
log x (a x x ) = ((∧) + (∧))× (a∧) -- = ((∧) + (∧))∼ a

log x a = (
·
)× (a∧) -- = (

·
)∼ a = a ∧K

In fact, any linear abstraction 14 is a product (ie. a composite) of factors that each look
like

a × (b1∧)× ...× (bn∧) .

In other words, the following is a normal form for logarithms to a linear base.∏
i:[1,m]

(ai ×
∏

j:[1,ni]

b
(∧)
ij )

The logarithm of the last expression to a fresh (not necessarily linear) base y is then easily
attained: ∑

i:[1,m]

(logy ai +
∑
j:[1,ni]

logy(bij)× (∧)) .

Naperian logarithms deal with non-linear abstraction, but we only know how to deal with
multiplicative structure and constant powers. Can we take logarithms of terms of general
exponential form, where the ‘base’ occurs in both the exponent and the iterand? What about
logarithms of sums? Böhm [Böh79]15 16 pointed the way. In fact, he devised an innovative
(and delightful) form of bracket abstraction, by extending the logarithm operation to arbitrary
arithmetical expressions, while preserving its Naperian core.

To take the logarithm of a term of general exponential form (where the exponent need not
be constant), we re-express it as a product of constant powers. There is more than one way
to do this.

One way uses Church’s pairing combinator ( ,) = λa b c → c a b 17. The pairing combinator
satisfies

(a, b) = a(∧) × b(∧)
K ∧ (a, b) = a

(
·
) ∧ (a, b) = b

14ie, in which the bound variable occurs exactly once, so not like the left hand terms in the last two equations.
Note that if a variable occurs somewhere in an expression, it is not necessarily used: it may be multiplied
by zero, perhaps in disguise.

15I am very grateful to Roger Hindley for a copy of this almost unobtainable paper.
16That it seems I have now lost!
17For example: (∧)× (×)× (∧)(×). This we mentioned before in section 4.1 on page 7.
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Note that (a ∧ b) c = b ∧ (a, c). So we can express a ∧ b as a product of two exponentials in
which each power is a simple combinator.

a ∧ b = (λc → b ∧ (a, c))

= (a, )× (b∧) -- ie a( ,) × b(∧) using superscript notation.

Another such re-expression uses the flip or C combinator (∼) = λa b c → a c b. 18

a ∧ b = (λc → a ∧ (b ∼ c))

= (b ∼ )× (a∧) -- ie b(∼) × a(∧) using superscript notation.

The point is that Napier has already given us the logarithms of such quantities!
We have thus some ‘exponential’ doppelgangers of the S combinator, referred to previously

as B and C in section 5 (in connection with Curry’s treatment of the ζ-law). Using the infix
notation of that section

aC b = a× ( ,) + b× (∧)
aB b = a× (∼) + b× (∧)

This is what we need to extend logarithms to general exponential form, where the exponent
is not constant.

logx(a ∧ b) = (logx a) C (logx b) = (logx b) B (logx a)

For example: logx(xx), ie the self-application combinator sap, comes out as ( ,) + (∧), or
equivalently (∼) + (∧).

How about logarithms of additive form? We already know how to do this by brute force,
since a sum a + b can be expressed as an exponential to an exponential to a constant ab

(+)
.

But is there not something more dainty? There is.
Let curry be some closed expression19 such that curry f x y = f (x , y). It is direct that

curry(a(∧)) = a, and so x ∧ curry(a(∧)) = xa. But much more obtains:

x ∧ curry(a(∧) + b(∧)) = xa + xb .

(We even have curry(a(∧) × b)x = xa × b, regardless of whether b is numerical.) This gives
Böhm’s astounding formula for the logarithm of a sum:

logx(a+ b) = curry((logx a)(∧) + (logx b)
(∧))

Finally, as you may suspect from this formula, the logarithm of zero is Curry’d naught,
which happens to be (

·
) ∧ K . This quantity ‘absorbs’ anything to its left, in the sense that

a + (
·
)K = b × (

·
)K = (

·
)K . Curry’d one, by the way, is the pairing combinator ( ,), and both

K∼ and 1K happen to be (
·
).

For convenience, I’ve put the laws of Böhmian λogarhythms in a table in figure 1 on the
next page.

It is time we had a picture. See figure 2.

18Among other curious things, (∼)× (∼) = 1, (∧)× (∼) = ( ,), and ( ,)× (∼) = (∧).
19Three examples are B × ( ,)(×), K × ( ,)(+) and ((, )× (×))(∼)
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pairing apparatus: (a, b) = a(∧) × b(∧) ; curry f x y = f(x, y)

logx(
∏
i ai) =

∑
i(logx ai) ; logx 1 = (

·
)

logx(
∑

i ai) = curry(
∑

i(logx ai)
(∧)) ; logx(

·
) = curry(

·
) = (

·
)K

logx(a ∧ b) = (logx a)× ( ,) + (logx b)× (∧)
= (logx b)× (∼) + (logx a)× (∧)

logx(a,b) = (logx a)× (∧) + (logx b)× (∧)
logx(a∼ b) = (logx a) + (logx b)× (∧)

Figure 1: Böhm’s λogarhythms

.

Figure 2: Front page of Laird Napier of Merchiston’s (1614) book on logarithms.
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7 Calculators and combinators

In the dawn of functional programming, there were some working implementations of com-
binator machines, using a complete set of combinators such as SK, BWCK, or a variant
thereof 20 . If we count both paper and vapour implementations, there were about a dozen.
One can daydream about implementing ‘in hardware’ a machine taking AMEN as a basis.
This would be an arithmetical calculator indeed 21, handy to have in a pocket, or on a wrist. 22

To be remotely sensible, we should bake-into the calculator lots of binary combinators other
than (∧),(×),(+) and (

·
). Many familiar combinators show up everywhere, and deserve names.

23

It makes no sense to ignore the associativity of addition and multiplication. So in such
an arithmetical machine one might use ‘polyadic’ forms of

∑
and

∏
, taking finite lists as

20For example: [Tur79] [Sto85] [Sto83]. For implementing functional languages, attention quickly switched to
supercombinators extracted from a particular program, but research on complete sets of combinators still
continues, if sporadically. TODO: cite some

21In its ancestry there would be those cash-register-resembling desktop ‘adding machines’ around in the 1960’s,
and the pocket calculators of the 80’s.

22I have implemented a calculator https://github.com/GussyFinkNottle/amen-calculator, that orients
algebraic laws in a certaon way to rewrite an expression to a certain arithmetical normal form, should one
exist. The calculator has proved useful and enlightening in my explorations and experiments with Naperian
arithmetic. Trying to do reliable pencil-and-paper calculations was too exacting.

Using the calculator, not only can one observe what combinators do, but it is also possible (adding extra
arguments) to investigate whether expressions are equal mod-ζ.

23One observation is that (∧), (∼), ( ,)∼ (binary exchanges) and their flips (∧)∼, (∼)∼, ( ,) are a
handy 6-pack of combinators with which to permute the top 3 positions of a stack. The six are
{1, (12), (23), (13), (123), (132)} in cycle notation.

cycle combinator effect
() I, or (∧)∼ skip. (∧)∼ = (∼)× (∼)
(12) E, or (∧) c is unchanged, but a and b are swapped.
(23) C, or (∼), or ‘flip’ a is unchanged, but b and c are swapped.
(13) ( ,)∼ flipped pairing b is unchanged, but a and c are swapped.
(123) ( ,) pairing the cells are rotated ‘left’.

(132) R = (∼)∼ flipped flip rotation ‘right’. RRR

= (∼)

These permutative combinators should all be hand-crafted. There are four that leave at least one stack
position unchanged, and three that leave one fixed and swap the other two. There are two that involve
barrel-shifting, or ‘3-chains’, in different directions. Cunning linear wheezes exist to perform barrel-shifting
without storage overhead, ie ‘in-place’.

Multiplying by (∼): The combinators (∧) and ( ,) are ‘cognate’ in that multiplication by (∼) transforms
each to the other: (∧)×(∼) = ( ,) and and ( ,)×(∼) = (∧). As already mentioned (somewhere) (∼)×(∼) = 1

Remarks about GC:
The combinators (

·
) and K = (

·
)(∼) are not linear but (even better, from the point of view of garbage

collection) affine in that reductions involving them may discard subexpressions. Rewrites that need no

new space can be performed during garbage collection. Binary nodes such as ( (
·
)a) function as indirection

nodes. They contain a spare field, that can be used to hold (for example) a backchain/provenance pointer
in a chain of indirection nodes. My investigations suggest that there is no guarantee (in general) that a
linear binary combinator will not require at least one new binary cell for its contraction; however, they
bear no responsiblity for introducing sharing.

On the other hand, the combinators (+), W , S = (B), SC = (C) (among many others, for example those
for operating on lists or streams) involve sharing, contraction, diagonalisation, or other duplication: we
cannot perform their reductions during garbage collection.
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arguments. ∑
[a1, .., ak] = a1 + ...+ ak∏
[a1, .., ak] = a1 × ...× ak

The apparatus for finite lists is not too bizarre: the Church encoding of the constructor
pushing article a onto the front of a list l is something like l + a(∧). Inevitably, the Church
encoding of the constructor for the empty list is (

·
).

Once one has (finite) lists, one might consider (infinite) streams, and perhaps (finite-and-
infinite) co-lists. How might

∑
and

∏
work with infinite streams?

One answer might be that the sum of a stream is another stream, consisting of the accu-
mulated finite partial sums, starting with 0. The product might analogically consist of the
accumulated finite partial products, starting with 1. The general idea is that a stream is
turned into a stream of finite lists, being the finite prefixes of the stream. Each finite list is
mapped to a sum or product.

If one were to extend the arithmetical machine with infinite streams, how should the op-
erators behave when one or other of their arguments are streams? All I can say is that it
seems likely that the operations (a+), (a×), (a∧) should distribute over streams. Our binary
arithmetical operators are all continuous in their business-end: the right-hand argument. It
is however, dauntingly tricky24 to devise an arithmetic calculus in which numbers live cheek-
by-jowel with both infinitistic streams and finite lists of numbers.

To turn back from infinity, toward technology, consider graph rewriting with ‘garbage
collection’, or recycling inaccessible storage for future re-use. The fragment MEI consisting
of (exponentiation, multiplication and unity) captures linear abstraction, and MEN captures
affine abstraction. It may be an advantage to easily recognise such features of an expression.
For one thing, affine functions never introduce sharing, though they can free garbage. The
possibility of sharing requires constant care when rewriting graphs, and administering their
storage. In graph reduction, the garbage collector (and not just the mutator) can safely and
beneficially perform certain ‘affine’ forms of calculation – eg projections from tuples. See
‘Fixing some space leaks with a garbage collector’ by Philip Wadler [Wad87].

I am attracted to the idea that all rewriting should be performed by overwriting the root
node of the rewritten expression with an indirection node to the root node of the reduct. This
creates a lot of indirection nodes, sometimes in chains. However they can be eliminated during
garbage collection, when making a fresh copy of the machine state in which all references are
direct.

8 Origins and heresies

Slight variants of the arithmetical combinators abound in the literature. Some examples are
in Rosenbloom ([Ros50, sec. 3.4] Stenlund ([Ste72, sec. 2.4] and Burge ([Bur75, sec. 1.8]
They were surely defined by Church, and – to stretch a point – Wittgenstein (of whom, more
anon). But in some sense we all know the definitions, if we understand the concept of iteration
at all. They are in our brain-stems or DNA.

Of the authors mentioned above, as far as I know, only Stenlund notes the combinatorial
completeness of the arithmetical combinators. In his thesis from 1972 he attributes the
result to F. B. Fitch. He thinks he was made aware of it in correspondence with some of

24But not unprecedented. Both Tait and Martin-Löf have devised type-systems for calculi of infinitary (well-
founded) terms.
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Fitch’s students. Apparently independently, Böhm was by 1977 aware of the combinatorial
completeness ([Böh79],[Böh81] – written in 1977). As far as I am aware, either or both of these
publications note the analogy between λ-abstraction and logarithms referred to in section 6,
and in fact wrote the logarithm function as “λog”. An algorithm that provably computes
logarithms is, for some decent value of “is”, a proof of combinatorial completeness.

Repulsive variants of arithmetical notation: Many definitions of arithmetical combinators
get the argument order slightly wrong, in this author’s opinion. They make the multiplication
combinator the same as the B composition combinator. This is a mistake. The ‘business end’
of an arithmetical operation should always be the second operand: the power ∧p, the multi-
plier ×m, the increment +i, the residue (

·
)r. We are misled, perhaps by the commutativity

of × and + with finite numerical operands. This mistake for × propagates in turn to the
argument order for addition +.

To establish the scriptural correctness of my version, allow me to assert that my definitions
(at least for ×) can be read into Wittgenstein’s Tractatus (around 6.02 and 6.241). The argu-
ment order has also the authority of Cantor according to whom the alternative is ‘repulsive’
– abstoßende. In fact Cantor started off using repulsive argument order, but soon thought
better of it. (This is according to Michael Potter, [Pot90, p. 120].) In any case, the notation
on which Cantor settled coheres attractively with exponential notation for iteration, if we
remember that multiplication is composition in reverse:

fα×β = (fα)β, f1 = f,
fα+β = fβ · fα = fα × fβ, f0 = 1 .

The last word belongs to Napier, prewritten in his note at the end of chapter 2 of book 1
of his Descriptio [Nap14] on logarithms. :

Indeed I await the judgment and censure of the learned men concerning these
tables, before advancing the rest to be published, perhaps rashly, to be examined
in the light of envious disparagement.

AMEN
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